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Starting from considerations used in the theory of integration of systems
of linear differential equations, Krylov [1 ] has developed a method of
reducing the determinant | A ~ A E|{ to a form, where A occurs in the ele-
ments of one row only. Krylov's transformation has been analysed algebraic-
ally in a number of publications [2], [3 ], [4 1. The present note offers
a new and entirely elementary method of such a transformation. It does not
require any knowledge of auxiliary material and we believe that it is the
most purely algebraical of all known methods.

1. Let A be a real matrix of the n-th order, while x is a real column
vector (with n components). Assume that the column vectors

z, Az, A*z,..., A" I 1)
are linearly independent. Then the matrix
X=|=x Az, A%, ..., A" x| (2)
is nonsingular, We form the product of the matrices
(A—AB)X =| Az —z, Ax —Adz,..., AT2— 24"z | &)

Turning to the determinants, we obtain by means of "fringeing"

|A—AE] | X | =1 0 o ... 0

(4)
r Az—ixr Al—2rdz...ATz— 24"z

Now we transform the obtained determinant in the following manner. We
multiply the first column by A and we add the result to the second column;
we multiply the obtained second column by A and we add the result to the
third column; we multiply the obtained third column by A and we add the
result to the fourth column, and so forth In this way we ultimately
arrive at

1 A ~A2 ...k" (5)
|lA—XE| |X|=|z Az A%...A"
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Since | X| £ 0, we have

1|1 ML m
| A=2E | = —L |1 2 (6)

X x Ax A%z ... A"z
In the determinant thus obtained we find A in the elements of the

first line only. This is Krylov’s transformation in the so-called
"regular" case [5].

2. The vector A™x can be represented as a linear combination of the
vectors (1):

A" = p AV x4 p AT 24 L +p,_,Az + p,=x 0]

We introduce the notation

Mgt At — Ppp—Pp=1(Q)

Multiplying in the determinant (6) the first, second, third, ..., n-th
columns by - p_, — Pp.is = Pp.ps +++» = Py, Tespectively, and adding the
results to the last column, we find

1 » 32 .. 11 f(k)
1 8
A—E| = X||x Az A%z ... A1 2 0 ®
Hence
| A—=XE | =(=1" 2. 9)

Thus, for an expansion of the determinant |A — A E| in terms of the
elements of the first line, it is sufficient to find the coefficients of
the relation (7). It is known [5 ] that this can be done without comput-
ing the determinants.

3. Let us consider the so-called "singular" case, when the vectors
(1) are linearly dependent at any choice of x. Assume that the vectors

z, Az, A%, ..., A" (s < n) (10
are linearly independent, but
A’z = A2 4 A2 - 4 q’_lA-'"' +4,z (11)
We will show that the polynomial
A=A g — . —g, A—gq, (12)
is a divisor of A - A E|.

Assume that in the matrix
Iz Az, A%,... A"z | (13)

of rank s, the rows with the subscripts Ry, By, ..., B
dependent. Denote by Vi Vou evey ¥

¢ 8Te linearly in-

n-g the subscripts of the remaining
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rows and by Ek the k-th column of the unit matrix E.

Form the nonsingular matrix

X=uaALA%“”,#ﬂ,EWEW.”,QMJH (14)
and consider the product
(A —2AE) X =| Az —)z, A% — Az, ..., A% — 214"z, 2, 2, , oy U9

Turning to the determinants and "fringeing". we obtain, with the already
known elementary transformations of the columns,

1 y LU Lant SR U 0 0 ... 0

T Az Ax... A"z A% %y Pu o,

[A—XE| |X|= (16)

By means of elementary transformations, applied to the last n rows,
this determinant can be given the form

X ns (7

where all elements of the block 0".".,+1 are zero.
Since | X| £ 0, we derive from (16)

1 Xos, a—s|

l4—2E| =—"TF A A= (18)

.......

From the first of these two equalities we see that the determinant A
is a divisor of |A - A E].

We now note that the columns of the block X".+1 obey the same linear
relations, which are fulfilled by the columns of the matrix (13); there-
fore the determinant A can be reduced, by means of elementary transforma-
tions of the columns, to the form

s—1 ,
R A (19)

Thus
. 1 Xny b

showing that Y(A) is a divisor of |A - A E|.

We have mentioned already above that the coefficients of the poly-
nomial y(A) (which are identical with those of the right hand member of
(11) ) can be determined without computing the determinants.
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4, Let us use Ek(k =1, 2, ..., n) as vector x and find the corres-
ponding divisors ¢m(A). It is easily seen that their common minimum
multiple ®(A) either coincides with the minimum polynomial of the matrix
A, or is divisible by it without rest. Indeed, assume

DM =g MNP (k=10 ) 21)
Since, according to (11), ¢%(4)Eh = 0, we must have

Q(A)E, =0 (kem1, 3,...,1) (22)
or
©(A)|Eyr ..., E | =O(A)E=®(4) =0 23)

which proves the correctness of our statement.

All different roots of the equation |4 — A E| = 0 are roots of the
minimum polynomial of the matrix A, therefore all different roots of the
secular equation will be found among the roots of the polynomials ¢ich),
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