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Starting from considerations used in the theory of integration of systems 

of linear differential equations, Krylov [ 1 1 has developed a method of 

reducing the determinant 1 A - x El to a form. where R! occurs in the ele- 

ments of one row only. Krylov’s transformation has been analysed algebraic- 

ally in a number of publications [ 2 1 , [ 3 1 , [4 1 . The present note offers 

a new and entirely elementary method of such a transformation. It does not 

require any knowledge of auxiliary material and we believe that it is the 

most purely algebraical of all known methods. 

1. Let A be a real matrix of the n-th order, while x is a real column 

vector (with n components). Assume that the column vectors 

z:, Ax, A%, . . . , A”% (1) 

are linearly independent. Then the matrix 

X = 11 x, Ax, A2x, . . . , A”-lx 11 (2) 

is nonsingular. We form the product of the matrices 

(A-),AB)X=Ij AZ-kc, ~l”~-aAz,...,A~~-~A*-~z~ (3) 

Turning to the determinants, we obtain by means of “fringeing” 

IA-hT[ ( XI= 1 

I 

0 0 . . . 0 

1 
(4) 

X Ax-b A2x --Ax . . . A%- ?,A”-‘I 

Now we transform the obtained determinant in the following manner. We 

multiply the first column by x and we add the result to the second Column; 

we multiply the obtained second column by x and we add the result to the 
third column: we multiply the obtained third column by x and we add the 

result to the fourth column, and so forth In this way we ultimately 

arrive at 

1 A A’ . . . a” 

IA-AXE 1 IYI=l x Ax .4’x.. .Anx 
(5) 
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Since / Xl # 0, we have 

1% . . . An 

-4% . . . A% I 
(6) 

In the determinant thus obtained we find x in the elements of the 
first line only. This Is Krylov’s transformation In the so-called 
“regular” case [ 5 1 . 

2. The vector A”r can be represented as a linear combination of the 
vectors (1) : 

A’% = p,.4”-% + prAn-%+ . . . +p,,+Az + p,,z 

Ue Introduce the notation 

(7) 

211 - p,in-l - ppXn-x - . . . - p,_lA - p* = f (A) 

Multiplying In the determinant (6) the first. second, third. . . . . n-th 

columns by - P,, - P,,,~, - P,,,~. . . ., - P 1, respectively. and adding the 
results to the last column, we find 

1 ‘h I.2 . . . In-1 f (A) 
/A- IbE 1 = +j- x Ax A2x . . . A”-’ x 0 

(8) 

Hence 

1 A - XE 1 = (- l)“/(h) (9) 

Thus, for an expansion of the determinant 1 A - h E 1 In terms of the 
elements of the first line. It Is sufficient to find the coefficients of 
the relation (7). It Is known [5 1 that this can be done without comput- 
ing the determinants. 

3. Let us consider the so-called “singular” case, when the vectors 
(1) are linearly dependent at any choice of x. Assume that the vectors 

z, Ax, A’x, . . . , A’-% (s < n) (IO) 

are linearly independent, but 

A% = q#-‘x + qzAL-2z + . . . + g&x + qIx 

we will show that the PolYnomial 
(11) 

J, (1) = A* -- qlhS-l - qz7F - * * * - q6_rh - qu 

is a divisor of (‘~-h/It. 

(12) 

Assume that in the matrix 

11 2, Ax, A*x, . . . A’-% 11 (13) 

of rank s, the rows with the subscripts al, a2, . . . , ma are linearly ln- 
dependent. Denote by vi, v2, . . . , II,,+ the subscripts of the remaining 
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rows and by Ek the k-th column of the unit matrix E. 

Form the nonsingular matrix 

X = 1 x, AZ, A%, . . . , A?v, E uI. Et*, . . . 9 Eon_, II (14) 

and consider the product 

t-4 - XE) x = 1 -42 - h, A’x - aAz, . . . , A% - AA’-%, I~,, zDI, . . . , ztlnJ 05) 

Turning to the determinants and .fringeing.. we obtain. with the already 
known elementary transformations of the columns, 

lA_aE(Ixl= 1 a a*...a‘+ a’ o o...o 
= AZ A%. . . A’% A% zD, ‘0, ’ * * s+_.8 

(16) 

By means of elementary transformations, applied to the last n rows, 
this determinant can be given the rorm 

i a a2 . . . a* i 0 0. . . 0 . . . . .,. . . . . 
X s. s+1 !x 8. n--s 

0 1-8. s+1 i -G-8. n--r 

(17) 

where all elements of the block On_, H+1 are zero. . 

Since 1 X 1 f 0, we derive from (16) 

I -%I-& n--s I I 
i a a=. . .a' 

1 A-aE( = ,x, A, A= * y,;;; * (N 

From the first of these two equalities we see that the determinant h 
is a divisor of 1 A - x El . 

We now note that the columns of the block X, ,+l obey the same linear 
relations, which are fulfilled by the columns ok the matrix (13); there- 
fore the determinant h can be reduced, by means of elementary transforma- 
tions of the columns, to the form 

Thus 

1 a a2 . . . x8-l i 9 (a) 

‘x&s j 0 
(19) 

IA-~hE[=(-l)8 
I -?I--,, 11-s I I x’s, I 

1x1 

J, (h) 
(20) 

showing that $(A) is a divisor of 1 A - x El. 

We have mentioned already above that the coefficients of the poly- 
nomial +(A) (which are identical with those of the right hand member of 
(11) ) can be determined without computing the determinants. 
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4. Let us use Ek(k = 1, 2, . . . , n) as vector r and find the corres- 
ponding divisors ti;,(h). It is easily seen that their common minimum 
multiple #(A) either coincides with the minimum polynomial of the matrix 
A, or is divisible by it without rest. Indeed, assume 

@ @) = g, @) +k (I) (k-l,..., n) 

Since, according to (11). q?k(A)Ek = 0. we must have 

(21) 

@(A)&=0 (k=l, a,...& 
or 

@(&II&,..., E,~=Q,(A)E=Q,(A)=O 

which proves the correctness of our statement. 

(2) 

(23) 

All different roots of the equation 1 A - A El = 0 are roots of the 
minimum polynomial of the matrix A, therefore all different roots of the 
secular equation will be found among the roots of the polynomials tii(hl, 

62(h), . . . . $&. 
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